首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1611篇
  免费   134篇
  国内免费   29篇
电工技术   80篇
综合类   43篇
化学工业   364篇
金属工艺   78篇
机械仪表   73篇
建筑科学   60篇
矿业工程   13篇
能源动力   84篇
轻工业   195篇
水利工程   2篇
石油天然气   8篇
武器工业   5篇
无线电   163篇
一般工业技术   205篇
冶金工业   11篇
原子能技术   8篇
自动化技术   382篇
  2023年   71篇
  2022年   94篇
  2021年   75篇
  2020年   123篇
  2019年   40篇
  2018年   29篇
  2017年   67篇
  2016年   71篇
  2015年   137篇
  2014年   150篇
  2013年   211篇
  2012年   292篇
  2011年   81篇
  2010年   62篇
  2009年   45篇
  2008年   33篇
  2007年   47篇
  2006年   37篇
  2005年   22篇
  2004年   9篇
  2003年   9篇
  2002年   16篇
  2001年   13篇
  2000年   10篇
  1999年   16篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
排序方式: 共有1774条查询结果,搜索用时 758 毫秒
1.
In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were investigated to evaluate the potential as high energy storage capacitors. Relaxor ferroelectric Bi0.5Na0.5TiO3 was introduced to stabilize the antiferroelectric state through modulating the M1-M2 phase transition. Enhanced energy storage performance was achieved for the 3 mol% Bi0.5Na0.5TiO3 doped AgNbO3 ceramic with high recoverable energy density of 3.4 J/cm3 and energy efficiency of 62% under an applied field of 220 kV/cm. The improved energy storage performance can be attributed to the stabilized antiferroelectricity and decreased electrical hysteresis ΔE. In addition, the ceramics also displayed excellent thermal stability with low energy density variation (<6%) over a wide temperature range of 20−80 °C. These results indicate that Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 ceramics are highly efficient lead-free antiferroelectric materials for potential application in high energy storage capacitors.  相似文献   
2.
《Ceramics International》2020,46(2):1362-1373
Cerium oxide and silicon oxycarbide (Ce/SiOC) porous nanocomposites have been synthesized through the polymer derived ceramic route. In the synthesis of the preceramic precursors, the addition of urea facilitates the deposition of Cerium atoms on the surface of SiO2 nanoparticles since it prevents the SiO2 from agglomeration. Both Ce and urea affects the structural and textural parameters of the obtained ceramics. Less crosslinked structures are formed when the urea concentration increases and it also provokes a reduction of the carbon crystallite size. Cerium, on the other hand, induces an increase of the carbon size as well as the number of SiOC units. Pore anisotropy and smoothness of the surface are also dependent on the composition of the material. As expected, the better thermocatalytic behavior against CO2 decomposition is found at the largest Ce amounts but also, smooth surfaces and low pore anisotropies favor the accessibility of the gases to the thermocatalytic centers.  相似文献   
3.
The low shear rate rheology of two phase mesophase pitches derived from coal tar pitch has been investigated. Particulate quinoline insolubles (QI) stabilised the mesophase spheres against coalescence. Viscosity measurements over the range 10–106 Pa s were made at appropriate temperature ranges. Increasing shear thinning behaviour was evident with increasing mesophase content. At low mesophase contents the dominant effect on the near Newtonian viscosity was temperature but at higher contents it was the shear rate; temperature dependence declined to near zero. The data indicated that agglomeration could be occurring at intermediate mesophase volume fractions, 0.2–0.3. The Krieger–Dougherty function and its emulsion analogue indicated that in this region the mesophase pitch emulsions actually behaved like ‘hard’ sphere systems and the effective volume fraction was estimated as a function of shear rate illustrating the change in extent of agglomeration. At the higher volume fractions approaching the maximum packing fraction, which could only be measured at higher temperatures, the shear thinning behaviour changed in character and it is considered that this is possibly due to shear induced deformation and breakup of dispersed drops in the shear field.  相似文献   
4.
The brittleness of MoSi2 ceramic and the thermal mismatch between MoSi2 coating and C / C composite lead to brittle cracking of the coating at 900−1200 °C. This problem has been overcome in this studyby introducing submicron-SiB6 into the coating. The pre-fabricated cracks and a kinetics model of hot-pressed SiB6-MoSi2 ceramic could quantitatively predict the glass growth and crack healing. As expected, enhancing temperature and SiB6 content increased the growth rate of the borosilicate glass and the crack healing ability of MoSi2 ceramic, which was ascribed to the lower oxidation activation energy and larger specific surface area of submicron-SiB6. For the plasma sprayed coating, SiB6 with submicron structure was benefit for cracking inhibition and formation of borosilicate glass during oxidation, reducing the oxygen permeability and the consumption of inner coating. Hence, the 15 % SiB6-MoSi2 coatings raised the protection times to 84 and 120 h at 900 and 1200 °C respectively, presenting favorable oxidation protective performance.  相似文献   
5.
Steganography is the science of hiding secret message in an appropriate digital multimedia in such a way that the existence of the embedded message should be invisible to anyone apart from the sender or the intended recipient. This paper presents an irreversible scheme for hiding a secret image in the cover image that is able to improve both the visual quality and the security of the stego-image while still providing a large embedding capacity. This is achieved by a hybrid steganography scheme incorporates Noise Visibility Function (NVF) and an optimal chaotic based encryption scheme. In the embedding process, first to reduce the image distortion and to increase the embedding capacity, the payload of each region of the cover image is determined dynamically according to NVF. NVF analyzes the local image properties to identify the complex areas where more secret bits should be embedded. This ensures to maintain a high visual quality of the stego-image as well as a large embedding capacity. Second, the security of the secret image is brought about by an optimal chaotic based encryption scheme to transform the secret image into an encrypted image. Third, the optimal chaotic based encryption scheme is achieved by using a hybrid optimization of Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) which is allowing us to find an optimal secret key. The optimal secret key is able to encrypt the secret image so as the rate of changes after embedding process be decreased which results in increasing the quality of the stego-image. In the extracting process, the secret image can be extracted from the stego-image losslessly without referring to the original cover image. The experimental results confirm that the proposed scheme not only has the ability to achieve a good trade-off between the payload and the stego-image quality, but also can resist against the statistics and image processing attacks.  相似文献   
6.
《Ceramics International》2015,41(8):9373-9382
The aim of this work was to study the bioactivity of systems based on a clinically tested bioactive glass (BG) particulates (mol%: 4.33 Na2O−30.30 CaO−12.99 MgO−45.45 SiO2−2.60 P2O5−4.33 CaF2) and organic carriers. The cohesiveness of injectable bone graft products is of high relevance when filling complex volumetric bone defects. With this motivation behind, BG particulates with mean sizes within 11−14 μm were mixed in different proportions with glycerol (G) and polyethylene glycol (PEG) as organic carriers and the mixtures were fully injectable exhibiting Newtonian flow behaviors. The apatite forming ability was investigated using X-ray diffraction and field emission scanning electron microscopy under secondary electron mode after immersion of samples in simulated body fluid (SBF) for time durations varying between 12 h and 7 days. The results obtained revealed that in spite of the good adhesion of glycerol and PEG carriers to glass particles during preparation stage, they did not hinder the exposure of bioactive glass particulates to the direct contact with SBF solution. The results confirmed the excellent bioactivity in vitro for all compositions expressed by high biomineralization rates with the formation of crystalline hydroxyapatite being identified by XRD after 12 h of immersion in SBF solution.  相似文献   
7.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
8.
Y2Hf2O7 possesses low thermal conductivity and high melting point, which make it promising for a new anti-ablation material. For evaluating the thermal stability and the potential applications of Y2Hf2O7 on anti-ablation protection of C/C composites, Y2Hf2O7 ceramic powder was synthesized by solution combustion method and Y2Hf2O7 coating was prepared on the surface of SiC coated C/C composites using SAPS. Results shown that the coating exhibits good ablation resistance under the heat flux of 2.4?MW/m2 with the linear and mass ablation rates are 0.16?μm?s?1 and ?0.028?mg?s?1, respectively, after ablation for 40?s. With the prolonging of the ablation time, the increasing thermal stress causes the increase of cracks. Moreover, the chemical erosion from SiO2 and the physical volatilization of low temperature molten products aggravate failure of the Y2Hf2O7 coating.  相似文献   
9.
《Materials Letters》2007,61(8-9):1881-1884
Organic ultraviolet (UV) ray absorbents, cinnamic acid (CA) and p-methoxycinnamic acid (PMOCA) were intercalated into Zn2Al layered double hydroxides (Zn2Al-LDHs) by co-precipitation reaction. The organic–inorganic nanocomposites, Zn2Al-LDH/CA and Zn2Al-LDH/PMOCA were obtained. The samples showed excellent UV ray absorption ability and their catalytic activity for the air oxidation of castor oil greatly decreased when the organic UV ray absorbents were intercalated in the layers of the Zn2Al-LDHs. The studies suggested that Zn2Al-LDH/organic UV absorbent nanocomposites might be used as safe sunscreen materials.  相似文献   
10.
Firstly, the compress experiment is undertaken to investigate the efficiency of repaired panels in this paper, and then modeling of the mechanical behavior of the repaired composite panel under compressive static load is conducted by using of the finite element method. The effect of geometric non-linearity on the stress–strain response is considered in the numeric analysis. Fatherly, the user material subroutine (UMAT) is integrated with the ABAQUS package with the geometric non-linearity effect for studying the damage initiation and its progression in the composite structure, and quadrilateral, linear, thick shell elements (S8R) are adopted. Finally, the predicted strain distribution, damage evolution and strength of the laminate are compared with the test results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号